Использование лучистой энергии. Лучистая энергия и свет. Общее биологическое действие ультрафиолетовых лучей на человека выражается трояко

Из излучаемой солнцем энергии электромагнитных волн до поверхности земли доходит только 1% ультрафиолетовых лучей, 39% видимых световых лучей и 60% инфракрасных лучей. Остальная часть отражается, рассеивается или воспринимается атмосферой. Напряжение солнечной радиации зависит от угла падения света и прозрачности атмосферы, от времени дня и года. При загрязнении атмосферного воздуха пылью, дымом задерживается до 20 — 40%, а оконным стеклом - до 90% наиболее ценного ультрафиолетового излучения.

Биологическое действие солнечной радиации на организм животного связано с ее качественным составом у поверхности Земли. Лучи Солнца оказывают тепловое и химическое воздействие. Тепловое воздействие больше исходит от инфракрасных, а химическое - от ультрафиолетовых лучей. Эти лучи имеют различную глубину проникновения в кожу и ткани организма животных. Наиболее глубоко (до 2 — 5 см) проникают инфракрасные лучи. Их используют в терапии для глубокого прогревания тканей или обогрева новорожденных и молодых животных.

Световые лучи проникают в толщу на несколько миллиметров, а ультрафиолетовые - только в кожу на десятые доли миллиметров.

Влияние на животных солнечного света очень важно и многообразно. Его лучи вызывают раздражение зрительного нерва, а также чувствительных нервных окончаний, заложенных в коже и слизистых оболочках. Кроме того, они возбуждают нервную систему и эндокринные железы и через них действуют на весь организм. Под влиянием солнечного освещения у животных возрастает активность окислительных ферментов, углубляется дыхание, они поглощают больше кислорода, выделяют больше углекислоты и водяных паров. В периферической крови увеличивается количество эритроцитов и гемоглобина. Усиливается также переваривание корма и отложение в тканях белка, жира и минеральных веществ.

При недостатке света организм испытывает световое голодание, что сильно отражается на обмене веществ. В результате значительно снижается продуктивность и сопротивляемость к болезням, отмечают вялое заживления ран, появление кожных заболеваний, отставание в росте у молодняка. Ранней весной в связи с ослаблением защитных сил организма, вызванным резким снижением интенсивности солнечного освещения в предшествующие зимние месяцы, у животных увеличивается число заболеваний органов дыхания, наблюдается распространение некоторых инфекций. Поэтому в зимние месяцы животных регулярно выпускают на прогулки под открытым небом в наиболее солнечные часы дня. Реже всего световое голодание наблюдается при беспривязном содержании крупного рогатого скота и свободновыгульном содержании свиней. Световые лучи оказывают существенное влияние и на воспроизводительные способности животных.

Однако не безразлично для животных и очень сильное освещение, поэтому откармливаемых животных содержат в умеренно освещенных и даже затемненных помещениях.

Слишком яркий солнечный свет оказывает на не привыкших к нему животных неблагоприятное воздействие в виде ожогов, а иногда и солнечного удара. Для защиты животных от солнечного удара устраивают теневые навесы, используют тень деревьев, отменяют тяжелые работы на лошадях в жаркие часы дня.

Животные, особенно птица, очень чувствительны к продолжительности и интенсивности светового режима. Поэтому в практике промышленного птицеводства четко отработан световой режим в соответствии с физиологическим состоянием птицы.

Большое значение для животных имеет ультрафиолетовая часть солнечного спектра. Ультрафиолетовые лучи улучшают функционирование органов дыхания и кровообращения, кислородное питание тканей. Они вызывают также общее стимулирующее действие за счет расширения кровеносных сосудов кожи. При этом усиливается рост волос, активизируется функция потовых и сальных желез, утолщается роговой слой, уплотняется эпидермис. В связи с этим повышается сопротивляемость кожи, усиливается рост и регенерация тканей, заживление ран и язв. Ультрафиолетовые лучи нормализуют фосфорно-кальциевый обмен, способствуют образованию витамина D. Ультрафиолетовое излучение служит мощным адаптогенным фактором, широко используемым в животноводческой практике для сохранения здоровья и повышения продуктивности животных и птицы.

Ультрафиолетовые лучи обладают бактерицидным - бактериоубивающим действием. Поэтому солнечную радиацию издавна считают мощным, надежным и бесплатным естественным дезинфектором внешней среды. Некоторые формы микробов и вирусов под прямыми лучами солнца погибают через 10 — 15 минут.

Большое значение в предупреждении светового голодания имеет искусственное ультрафиолетовое облучение с помощью ртутно-кварцевых ламп и использование для обогревания животных ламп инфракрасного излучения. Режим их использования, дозировки и порядок работы должны контролироваться зооветеринарными специалистами. Работникам, обслуживающим животных в момент облучения, необходимо соблюдать соответствующие меры безопасности. Разработаны и используются соответствующие нормативы применения ламп инфракрасного и ультрафиолетового излучения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Лучистая энергия Солнца , поступающая на Землю, представляет собой самый значительный источник энергии, которым располагает человечество. Солнце, как и другие звезды, является раскаленным газом. Внутри Солнца существует область высокого давления, где температура достигает 15 - 20 млн. град. На Солнце имеется в незначительном количестве кислород и поэтому процессы горения, понимаемые в обычном смысле, не протекают сколько-нибудь заметно. Огромная энергия образуется на Солнце за счет синтеза легких элементов водорода и гелия.

Лучистая энергия солнца , поглощаясь поверхностью почвы, превращается в тепловую и передается в нижележащие слои почвы. Часть солнечной энергии отражается поверхностью почвы. Если температура поверхности почвы ниже, чем температура приземного слоя атмосферы, то почва отдает тепло, аккумулированное за счет поступившей солнечной радиации.

Лучистая энергия Солнца , поступающая на Землю, представляет собой самый значительный источник энергии, которым располагает человечество. Солнце, как и другие звезды, является раскаленным газом. Внутри Солнца существует область высокого давления, где температура достигает 15 - 20 млн град.

Лучистая энергия солнца , преобразуемая в тепло, может быть использована, минуя электролиз, непосредственно для термохимического разложения воды. Ранее было показано, что двухстадийные термохимические циклы мало вероятны при использовании тепла атомных реакторов. Но необходимые для двухстадийного термохимического цикла разложения воды температуры могут быть достигнуты при использовании солнечной энергии.

Лучистая энергия солнца , в первую очередь ультрафиолетовая часть солнечного спектра, обладает значительным биологическим действием. Мод ее влиянием в коже образуется витамин I), необходимый для правильного обмена в организме фосфора и кальция, важнейших составных частей костной и мозговой тканей.

Количество лучистой энергии Солнца , которая поступает за 1 мин на площадку в 1 см2, поставленную вне земной атмосферы перпендикулярно к солнечным лучам на среднем расстоянии от Земли до Солнца, называется солнечной постоянной. Предполагают, что при максимуме солнечной активности излучение Солнца несколько увеличива -, ется, однако оно не превышает долей процента. I Солнечная активность существенно влияет на земные процессы, проявляющиеся через солнечно-земные связи в ответной реакции Земли (ее внешних оболочек, включая биосферу) на изменение указанной активности.

С лучистой энергией Солнца связана освещенность земной поверхности, определяющаяся продолжительностью и интенсивностью светового потока. Вследствие вращения Земли происходит периодическое чередование темного и светлого времени суток, а также изменение продолжительности светового дня. Поскольку данный фактор имеет правильную периодичность, то его значение для жизни исключительно велико.

При фотосинтезе лучистая энергия Солнца преобразуется в химическую и в виде потенциальной энергии находится в растительной органической массе - продукте фотосинтеза.

Радиацией называют лучистую энергию солнца , попадающую на облучаемую поверхность.

Повышение плотности потока лучистой энергии Солнца , как уже отмечалось, может осуществляться зеркальными и линзовыми системами, однако в дальнейшем основное внимание будет уделено зеркальным концентрирующим системам, что не снижает общности принципиальных положений развиваемого подхода к формализованному описанию рассматриваемого процесса.

Источником естественного освещения является лучистая энергия солнца . Естественная средняя наружная освещенность в течение года по Месяцам и часам дня резко колеблется, дости-гая в средней полосе нашей страны максимума в июне и минимума в декабре.

Неисчерпаемым источником тепловой энергии является лучистая энергия солнца , которая вызывает также образование ветра, потоков воды и других видов энергии. Однако промышленное использование энергии солнечной радиации в виде теплоты является пока огра.

СОЛНЕЧНАЯ ПОСТОЯННАЯ - полное количество лучистой энергии Солнца , падающее вне атмосферы Земли на площадку единичной площади, расположенную перпендикулярно солнечным лучам на ср.

Источник естественного освещения - поток лучистой энергии солнца , доходящий до земной поверхности в виде прямого и рассеянного света. Оно наиболее гигиенично - имеет благоприятный спектральный состав. В зависимости от географической широты, времени года, состояния погоды уровень естественного освещения может резко изменяться и в довольно широких пределах.

ГЕЛИОУСТАНОВКА - устройство, улавливающее лучистую энергию Солнца и преобразующее ее в другие, удобные для практич.

Основным источником тепла для почвы является лучистая энергия солнца . Некоторое значение может иметь тепло, выделяющееся при экзотермических реакциях, вызываемых в почвенном слое микроорганизмами.

Первый термический фактор обусловлен неравномерным распространением лучистой энергии Солнца по поверхности Земли. В приполярных районах до 95 % лучей Солнца отражается от снега и льдов. Это объясняется тем, что в высоких широтах лучи входят в атмосферу под косым углом, а значит, их световая энергия распределяется на большую площадь земной поверхности. Скользящие солнечные лучи, проникающие в атмосферу не под прямым углом, проходят через более толстый слой воздуха. Поэтому здесь всегда холодно, формируется постоянно высокое давление. И наоборот, в экваториальной зоне солнечные лучи падают на поверхность Земли под прямым углом, сильно ее нагревая. В результате здесь формируется зона низкого давления. Поэтому происходит перемещение воздуха из приполярных районов в область экватора, т.е. из зон высокого в зоны низкого давления. Экваториальные воздушные массы, интенсивно и быстро нагреваясь, поднимаются и в высоких слоях атмосферы расходятся к северу и югу и охлаждаются.

ГЕЛИОЭЛЕКТРЙЧЕСКАЯ СТАНЦИЯ - гелиоустановка, преобразующая лучистую энергию Солнца в электрич.

Допустим, что мы можем собрать лучистую энергию солнца , которая падает на поверхность земли за год; если эту лучистую энергию мы сможем превратить в такую энергию, которая была бы для нас полезна, то оказывается, что при таком превращении мы покроем все источники энергии, которые в настоящее время имеются на земле.

Все большее практическое применение находит использование таких источников энергии, как лучистая энергия Солнца в полупроводниковых установках и фотоэлементах, использование внутреннего тепла Земли, энергии морских приливов и пр. Все это, вместе взятое, наряду с освоением управляемых термоядерных реакций позволит во много раз увеличить количество вырабатываемой электрической энергии по сравнению с современным уровнем.

Такой режим (постоянство QI) реально осуществляется в термогенераторах, использующих лучистую энергию солнца или тепло распада радиоактивных изотопов.

Покрытия с высоким значением степени черноты находят широкое применение в установках, использующихлучистую энергию Солнца . Практическая гелиотехника в настоящее время развивается бурными темпами.

Среди климатических факторов важное место в жизни растений занимают свет и тепло, связанные с лучистой энергией солнца ; вода; состав и движение воздуха. Атмосферное давление и еще некоторые явления, входящие в понятие климата, существенного значения в жизни и распределении растений не имеют.

В будущем возможно строительство более экономичных гелио-станций с использованием полупроводников (солнечных батарей) для непосредственного превращения лучистой энергии Солнца в электрическую энергию. ]

Свет - главный экологический фактор, определяющий основу жизнедеятельности растительного организма - фотосинтез, процесс превращения зелеными растениями лучистой энергии солнца в энергию химических связей органических веществ. Этот процесс происходит с поглощением углекислого газа и выделением свободного кислорода. При участии поглощающих свет пигментов - хлорофилла и некоторых других - углекислый газ и вода, вступая в реакцию, образуют основную пищу растений - углеводы.]

В своих исследованиях мы исходим из соображений, что, изменяя оптические свойства поверхности почвы, можно увеличить поглощение лучистой энергии Солнца днем и уменьшить излучение тепловой энергии ночью. Наши прошлогодние опыты с аце-тилцеллюлозной пленкой показали, что эта пленка может служить прекрасной защитой от излучения, но пока она слишком дорога для полеводства.

В широких масштабах развертываются работы в направлении создания солнечных электростанций, основанных либо на применении солнечных концентраторов совместно с термодинамическим (паротурбинным) циклом, либо на использовании технологии прямого преобразования лучистой энергии Солнца в электричество.

Таким образом, энергия, доставляемая Солнцем, может быть использована для получения работы в ветряном двигателе только при условии, что имеется разность температур отдельных частей атмосферы, создаваемая поглощением лучистой энергии Солнца и частичным испусканием ее в мировое пространство. Итак, на совершение работы идет не вся теплота, полученная от нагревателя, а только ее часть, остальная же теплота отдается холодильнику.

Атмосфера определяет световой и регулирует тепловой режимы Земли, способствует перераспределению тепла на земном шаре. Лучистая энергия Солнца - практически единственный источник тепла для поверхности Земли - частично поглощается атмосферой. Достигшая поверхности Земли энергия частично поглощается почвой и водоемами, морями и океанами, частично отражается в атмосферу.

Электромагнитная радиация ( лучистая энергия Солнца ) - электромагнитные волны, распространяющиеся со скоростью 300 тыс. км / с. Корпускулярная радиация состоит в основном из протонов, движущихся со скоростью 300 - 1500 км / с и практически полностью улавливаемых магнитосферой Земли.

Солнечная радиация является существенным фактором формирования климата. Ввиду запыленности городовлучистая энергия Солнца поглощается частичками пыли. По данным американских и английских исследователей, большие города получают на 15 % меньше солнечной радиации, на 10 % больше дождя, на 10 % больше облачных дней, причем за последние 80 лет частота возникновения туманов увеличилась в два раза.

Мы не случайно начинаем обзор именно с данного экологического фактора. Лучистая энергия солнца, или солнечная радиация,- основной источник тепла и жизни на нашей планете. Только благодаря этому в далеком прошлом на Земле органическая материя могла зародиться и в процессе эволюции достигнуть тех степеней совершенства, которые мы наблюдаем в природе в настоящее время. Основные свойства лучистой энергии как экологического фактора определяются длиною волн. На этой основе в пределах всего светового спектра различают видимый свет, ультрафиолетовую и инфракрасную его части (рис. 10). Ультрафиолетовые лучи оказывают химическое действие на живые организмы, инфракрасные - тепловое.

Рис. 10. Спектры солнечного излучения в. различных условиях (по: Одум, 1975).
1 - не измененное атмосферой; 2 - на уровне моря в ясный день; 3 - прошедшее через сплошную облачность; 4 - прошедшее через полог растительности.

К основным параметрам экологического воздействия данного фактора принадлежат следующие: 1) фотопериодизм - закономерная смена светлого и темного времени суток (в часах); 2) интенсивность освещения (в люксах); 3) напряжение прямой и рассеянной радиации (в калориях на единицу поверхности в единицу времени); 4) химическое действие световой энергии (длина волн).

Солнце непрерывно излучает огромное количество лучистой энергии. Ее мощность, или интенсивность радиации, на верхнем пределе атмосферы составляет от 1,98 до 2,0 кал/см 2 -мин. Этот показатель называют солнечной постоянной. Впрочем, солнечная постоянная, по-видимому, может несколько изменяться. Отмечено, что за последние годы яркость Солнца увеличилась приблизительно на 2%. По мере приближения к поверхности Земли солнечная энергия претерпевает глубокие преобразования Большая ее часть задерживается атмосферой. Далее на пути световых волн встает растительность, и если она представляет многоярусное сомкнутое древесное насаждение, то тогда до поверхности почвы доходит очень небольшая часть первоначальной солнечной энергии. Под пологом густого букового леса это количество в 20-25 раз меньше, чем на открытом месте. Но дело не только в резком уменьшении количества света, но и в том, что в процессе проникновения в глубь леса меняется спектральный состав света. Следовательно, он претерпевает качественные изменения, весьма существенные для растений и животных.

Говоря об экологическом значении света, надо подчеркнуть, что самое главное здесь -его роль в фотосинтезе зеленых растений, ибо результатом является создание органического вещества, растительной биомассы. Последняя представляет первичную биологическую продукцию, от использования и трансформации которой зависит все остальное живущее на Земле. Интенсивность фотосинтеза сильно изменяется в разных по географическому положению районах и зависит от сезона года, а также от местных экологических условий. Дополнительное освещение позволяет существенно повышать прирост даже древесно-кустарниковых пород, не говоря о травянистых растениях. И. И. Никитин в течение 10 дней проращивал желуди при непрерывном освещении, затем 5 мес. выращивал проростки на свету яркостью 4 тыс. лк. В итоге дубки достигли высоты 2,1 м. После пересадки в грунт 8-летний подопытный дуб давал годовой прирост в высоту 82 см, тогда как контрольные деревца - только 18 см.

Примечательно, что хотя жизнедеятельность и продуктивность животных находятся в прямой (у фитофагов) или косвенной (у зоофагов) зависимости от первичной продукции растений, тем не менее связь менаду последними и животными носит далеко не односторонний характер. Установлено, что животные-фитофаги, например лоси, поедая зеленую растительную массу и повреждая при этом фотосинтезирующие органы, способны
заметно снизить интенсивность фотосинтеза и продуктивность растений. Так, в Центрально-Черноземном заповеднике (Курская обл.) лоси съели всего 1-2% фитомассы молодых дубняков, но их продуктивность упала на 46%. Таким образом, в системе кормовое растение - фитофаг налицо и прямая, и обратная связи.

Огромную роль в жизни всех живых существ играет фотопериодизм. По мере изучения этого фактора выясняется, что фотопериодическая реакция лежит в основе очень многих биологических явлений, будучи прямым определяющим их фактором или же выполняя сигнальные функции. Выдающееся значение фотопериодической реакции в большой мере обусловлено ее астрономическим происхождением и в силу этого высокой степенью стабильности, чего, например, не скажешь о температуре среды, которая тоже чрезвычайно важна, но крайне неустойчива.

Уже самый факт разделения животных на две больших группы по времени активности - на дневных и ночных - наглядно свидетельствует об их глубокой зависимости от фотопериодических условий. О том же говорит установленная в 1920 г. американскими учеными У. Гарнером и Г. Аллардом закономерность, согласно которой растения по отношению к свету и температуре делятся на виды длинного и короткого дня. Позднее было выяснено, что аналогичная фотопериодическая реакция свойственна также животным и, следовательно, носит общеэкологический характер.

Закономерное изменение по сезонам года продолжительности светового дня обусловливает время начала состояния диапаузы многочисленных видов насекомых и других членистоногих, в частности клещей. Путем тонких экспериментов А. С. Данилевский с сотрудниками доказали, что диапауза стимулируется именно сокращением дня, а не понижением температуры воздуха, как считалось ранее (рис. 11). Соответственно этому закономерное увеличение продолжительности светового дня весною служит четким сигналом для прекращения состояния диапаузы. При этом видовые популяции, обитающие на разных широтах, отличаются специфическими фотопериодическими требованиями. Например, для бабочки щавелевой стрельчатки (A crony eta rumicis) , в Абхазии необходима продолжительность дня не менее 14 ч 30 мин, в Белгородской области-16 ч 30 мин, в Витебской области-18 ч и под Ленинградом-19 ч. Иными словами, с продвижением к северу на каждые 5° широты продолжительность дня, необходимая для выхода из диапаузы, у данного вида удлиняется примерно на полтора часа.


Рис. 11. Фотопериодическая реакция длиннодневного типа - бабочки-капустницы (1) и кароткодневного типа - тутового шелкопряда (2) (по: Данилевский, 1961).

Таким образом, фотопериодизм является основным фактором сезонной активности членистоногих. Более того, аналогичные исследования ботаников показали, что многие явления в сезонной жизни растений, динамика их роста и развития тоже относятся к фотопериодическим реакциям. Например, фотопериодический фактор служит сигналом для заблаговременной подготовки растений к зиме, независимо от состояния погоды. Все это делает фотопериодизм весьма существенным фактором при интродукции сельскохозяйственных растений в новые районы, при их культивировании в теплицах и т. д.

Наконец, сопоставление результатов экспериментов по фотопериодизму насекомых-фитофагов и их кормовых растений выявило глубокую между ними взаимозависимость. На воздействие одного и того же экологического фактора те и другие отвечают сходным образом, следовательно, их трофические связи имеют под собой глубокую эколого-физиологическую основу.

Изучение фотопериодических реакций высших позвоночных животных принесло тоже чрезвычайно интересные результаты. Так, у пушных зверей осенью развивается все более густой и пышный волосяной покров. Зимой он достигает наибольшего развития и максимальных термоизолирующих свойств. Эти защитные функции меха усиливаются толстым слоем жира, образующимся под кожей в конце лета и осенью. Зимой упомянутые морфофизиологические адаптации функционируют в полной мере. Издавна считалось, что основным фактором, определяющим сезонное развитие меха и жира, является температура воздуха, ее падение в осенне-зимние месяцы. Однако эксперименты продемонстрировали, что пусковой механизм данного процесса связан не столько с температурой, сколько с фотопериодизмом. В лабораторном виварии и даже на пушной ферме можно поместить американских норок или других зверей в клетки с регулируемым освещением и начиная с середины лета искусственно сокращать световой день. В результате процесс линьки у подопытных животных начинается значительно раньше, чем в природе, пойдет интенсивнее и, соответственно, завершится не к зиме, а в начале осени.

На фотопериодической основе покоится и важнейшее сезонное явление в жизни перелетных птиц - их миграции и тесно с ними связанные процессы линьки оперения, накопления жира под кожей и на внутренних органах и др. Конечно, все это - приспособления к перенесению неблагоприятных температурных и кормовых условий путем «избегания» их. Однако и в данном случае основную сигнальную роль играют изменения не температурного, а светового режима - сокращение продолжительности дня, что можно доказать путем экспериментов. В лаборатории, действуя на фотопериодическую реакцию птиц, не слишком трудно привести их в специфическое предмиграционное состояние, а затем - в миграционное возбуждение, хотя температурные условия останутся стабильными.

Оказывается, фотопериодический характер носит также цикличность половой деятельности животных, цикличность их размножения. Пожалуй, это особенно удивительно, поскольку биология размножения принадлежит к свойствам организма, наиболее тонко сформированным, обладающим наиболее сложной координацией взаимосвязей.

Опытами над многими «идами птиц и млекопитающих доказано, что путем увеличения продолжительности светового дня можно активизировать гонады (рис. 12), привести животных в состояние полового возбуждения и добиться продуктивного спаривания даже в осенне-зимние месяцы, если, конечно, положительную реакцию на световое воздействие обнаружат оба пола. Между тем самки у некоторых видов (например, воробьев) в этом отношении оказываются значительно более инертными, чем самцы, и требуют дополнительной стимуляции этологического порядка.


Рис. 12. Влияние света на развитие гонад у самцов и самок домового воробья, забитых после содержания при разных условиях (по: Поликарпова, 1941).
а - с воли 31 января; б - из камеры с комнатной температурой 29 января; в - из камеры с добавочным светом 28 января.

Некоторым млекопитающим - соболю, кунице, ряду других видов куньих, а также косуле - свойственна интересная особенность биологии размножения. У них оплодотворенное яйцо сначала не имплантируется в стенку матки, а <в течение длительного времени находится в состоянии покоя, так называемой латентной стадии. У соболя эта стадия продолжается несколько месяцев и лишь приблизительно за полтора месяца до рождения щенков происходит имплантация яйца и очень быстрое эмбриональное развитие. Таким образом, беременность распадается как бы на длительный период предбеременности, или латентный, и короткий, порядка 35-45 дней, период вынашивания, т. е. собственно эмбрионального развития. Благодаря этому замечательному приспособлению животные получают возможность с минимальными энергетическими затратами переживать тяжелое зимнее время. Оказывается, что продолжительность латентного периода также регулируется фотопериодической реакцией и, если воспользоваться последней, может быть существенно сокращена.

Весьма велико влияние соотношения периодов освещения и темноты и изменения на протяжении суток интенсивности освещения на активность животных. Например, дневные птицы на рассвете пробуждаются при определенной по своей интенсивности «освещенности пробуждения», зависящей от высоты солнца по отношению к горизонту. Наступление надлежащей «освещенности пробуждения» служит сигналом, стимулирующим активизацию птиц. Дрозды начинают подавать признаки жизни при 0,1 лк, когда в лесу еще почти совсем темно; кукушка требует для своего пробуждения 1 лк, славка-черноголовка - 4, зяблик-12, домовый воробей - 20 лк. В соответствии с этим при хорошей погоде птицы в данной местности пробуждаются в определенное время и в известном порядке, что позволяет говорить о существовании «птичьих часов». Например, в учлесхозе «Лес на Ворскле» Белгородской области в мае-июне первые голоса птиц раздаются в среднем в следующее время: соловей - в 2 ч 31 мин, черный и певчий дрозды - 2 ч 31 мин, кукушка - 3 ч 00 мин, славка-черноголовка - 3 ч 30 мин, большая синица - 3 ч 36 мин, полевой воробей- 3 ч 50 мин.

Суточные изменения режима освещенности оказывают глубокое влияние на жизнедеятельность растений,и прежде всего на ритм и интенсивность фотосинтеза, который прекращается в темные часы суток, в непогоду и в зимнее время (рис. 13).

Наконец, солнечная энергия может играть очень важную роль как источник тепла, воздействуя на живые существа непосредственно или глубоко влияя на их среду обитания в локальном или глобальном масштабах.

В общем из приведенных выше фрагментарных сведений видно, что световой фактор играет в жизни организмов чрезвычайно важную и разностороннюю роль.


Рис. 13. Зависимость фотосинтеза от световой энергии у разных растительных популяций (по: Одум, 1975).
1 - деревья в лесу; 2 - листья, освещенные солнцем; 3 - затененные листья.

Лучистой энергией называется со­вокупность всех электромагнитных волн, возникающих и распро­страняющихся в пространстве со скоростью, приближающейся к 300 тыс. км/с. Патологическое влияние на организм оказывает преимущественно излучение, способное вызывать ионизацию в тка­нях. Причем болезнетворное действие лучей обратно пропорцио­нально длине их волн.

Различные виды лучистой энергии обладают неодинаковым дей­ствием. В одних случаях лучистая энергия, поглощаясь тканями, переходит в тепловую, в результате чего происходит перегревание животных; в других она оказывает химическое влияние на ткани, вызывает ряд химических превращений в организме, дает так назы­ваемый фотохимический эффект.

В возникновении патологических процессов в организме опре­деленную роль могут играть солнечные лучи и в первую очередь ультрафиолетовые солнечного спектра. Эти лучи обла­дают химическим действием, и чем короче длина волны, тем они ин­тенсивнее. Эффект влияния лучей на организм зависит от длитель­ности действия, их угла падения, толщины атмосферного слоя, че­рез который лучи проходят, а также от проницаемости тканей и от общей реактивности организма. При длительном действии ультра­фиолетовых лучей у животного расширяются сосуды, падзет кро­вяное давление, нарушается обмен веществ (в основном белковый), усиливаются процессы распада в тканях.

При интенсивном и длительном облучении больших посерхиос-тей тела у животного могут возникнуть резкие расстройства гемо­динамики - типа шока, что иногда приводит даже к летальному исходу. Патогенное воздействие ультрафиолетовых лучей на цен­тральную нервную систему развивается в двух направлениях: с одной стороны, происходит торможение ее деятельности вследст­вие раздражения рецепторного аппарата (лучами и токсическими продуктами распада тканей); с другой стороны, появляется токси­ческое воздействие на нее (гуморальным путем) облученного холе­стерина и белково-липоидных комплексов крови.

Длинные волны солнечного спектра, крас­ные и инфракрасные лучи оказывают на организм тепловое влияние. От чрезмерного действия этих лучей наблюда­ется перегревание организма или возникают различной степени ожоги.

Под влиянием прямых солнечных лучей, если они попадают на незащищенную голову животного, может возникнуть солнечный удар. При этом происходит расширение сосудов центральной нерв­ной системы (мозговых оболочек) и повреждение вазомоторов. Иног­да отмечают разрывы капилляров и кровоизлияния в нервную ткань. Вначале животные сильно возбуждаются, дыхание и пульс у них учащаются, начинаются судороги, затем наступает стадия угнетения. Животные нередко гибнут от паралича центров дыха­ния или кровообращения. Влияние солнечных лучей на организм может наступить не сразу, а спустя несколько часов, то есть когда ультрафиолетовая химическая часть спектра начинает проявлять свое действие. В отличие от теплового удара при солнечном ударе необязательно предварительное перегревание организма: повыше­ние температуры тела при солнечном ударе считается вторичным фактором в результате раздражения нервных теплорегулирующих центров. Нарушение функции высших нервных центров, возбуж­дение коры головного мозга при солнечном ударе более вариабель­ны и стойки, чем при тепловом.

Излучение лазера. Лазер способен излучить монохроматические пучки света с ма­лым углом расхождения. Лу­чи действуют на ткань очень короткий промежуток времени (сто­тысячные доли секунды), поглощаются они пигментированными тканями, эритроцитами, меланомами и пр. Лучи лазера разрушают живые ткани, особенно чувствительны к ним опухоли. Поврежде­ние биологического объекта происходит в результате термическо­го действия луча на ткани и поглощения ими тепловой энергии. В тканях и клетках одновременно образуются токсические вещест­ва и изменяется действие тканевых ферментов. Кроме того, возмож­но механическое действие вследствие мгновенного перехода твердых и жидких веществ в газообразное состояние и повышения внутри­клеточного давления (до нескольких десятков и сотен атмосфер).

Действие ионизирующего излучения . Ос­новной источник ионизирующего излучения - рентгеновское и радиоактивное. Биологическое действие этой радиации зависит от многих факторов: вида излучения, дозы общего или местного воздействия, внешнего или внутреннего облучения, однократного или повторного, а также от индивидуальной и видовой чувстви­тельности организма.

Различные ткани обладают разной чувствительностью к радиа­ционному создействию. По степени поражаемосги их можно рас­положить следующим образом" кроветворные органы, кишечные же­лезы, эпителий половых органов, эпителий кожи и хрусталика, эндотелий, фиброзная ткань, внутренние эпителиальные органы, хрящи, кости, мышцы, нервная ткань. Функциональные и струк­турные изменения в нервной системе, наблюдающиеся при радиа­ционных воздействиях, приводят к нарушению регуляции деятель­ности всего организма, к понижению устойчивости его к инфек­ционным заболеваниям.

Лучевая болезнь - общее поражение организма в ре­зультате действия больших доз ионизирующих лучей. Возникает она как при наружном действии радиации (при аварии во время ра­боты с генераторами, способными производить ионизирующие излу­чения, при атомном взрыве, при неправильном применении лучевой терапии), так и при внутреннем облучении (при попадании внутрь организма с пищей, с вдыхаемым воздухом различных радчоактив-ных веществ).

Течение лучевой болезни может быть острое (при дейс^ии на организм больших доз ионизирующей радиации) и хроническое (на организм действуют малые дозы, но длительное время).

Отдаленные последствия ионизирующих излучений - их кан­церогенное влияние и поражение хромосомного аппарата половых клеток. При тяжелых лучевых поражениях в результате пони­жения резистентности организма отмечают аутоинфекцию, а при накоплеьин в крови токсических веществ - явления гоксеучи.

Действие электричества.

Патологическое влияние электрической энергии на организм животного произойдет, если оно непосредствен­но соприкасается с токонесущим предметом или если организм под­вергся разрядам атмосферного элекгричеава (при ударе молнии). Патологические изменения в организме зависят от свойств электри­ческого тока, реактивности организма и его тканей, а также от ряда частных сопутствующих моментов. Действие электрического тока на организм определяется его напряжением и силой, длительностью воздействия, характером тока (постоянный, переменный), сопротив­лением тканей, направлением тока и индивидуальными особенно­стями животного Пагогенность тока обусловливается и продолжи­тельностью прохождения его через организм, с увеличением вре­мени действия тока увеличивается и его вредность.

Последствие от электрического тока зависит от жизненной важ­ности органов, через которые он прошел. Наиболее опасно для жизни, если ток проходит через сердце Происходит медленный и необратимый его паралич, развиваются явления мерцательной арит­мии желудочков, и наступает остановка сердца в состоянии диасто­лы. Нервные центры у животных некоторых видов менее чувстви­тельны к электрическому току по сравнению с сердцем.

Различают местное и общее действие электрического тока. При местном действии получается ожог, имеющий иногда фор­му того проводника, который оказал свое действие. На месте входа и выхода тока из организма образуются раны, а вокруг них из-за паралича кожных сосудов - ветвистые фигуры красного цвета. Спустя некоторое время (несколько дней, недель) после воздейст­вия электрического тока на месте поражения нередко наблюдают омертвение наружных покровов и нижележащих тканей. Иногда на коже остаются небольшие серовато-белого цвета твердые участ­ки овальной или круглой формы, окаймленные валикообразными возвышениями. Это так называемые электрические знаки; гистоло­гически они имеют вид палисадообразно расположенных клеток мальпигиевого слоя кожи. Этим же тканям свойственно ячеистое строение, причем в некоторых ячейках бывает газ, образовавший­ся, по-видимому, в результате электрохимического действия тока.

При общем действии электрического тока в первую оче­редь поражаются нервная и сердечно-сосудистая системы. Измене­ния в центральной нервной системе протекают двухфазно: в виде кратковременного возбуждения и более длительного угнетения, или торможения. Фаза возбуждения резко выражена при действии тока небольшой силы При прохождении же тока в 100 А и выше фаза возбуждения весьма короткая, но за ней быстро следует фаза тормо­жения, проявляющаяся нередко падением кровяного давления, прекращением дыхания. В результате наступает так называемая мнимая смерть.

Нарушение кровообращения и дыхания при электротравме так­же протекает двухфазно. В первую фазу повышается артериальное и венозное давление, учащается дыхание. Изменения гемодинами­ки и ритма дыхания обусловлены электрораздражи гелем рецепто­ров, а также судорожным сокращением поперечнополосатой муску­латуры. Во время повышения кровяного давления сердечные сокращения становятся реже вслед­ствие раздражения током блуждающего нерва. Во второй фазе, которая наступает довольно быстро, кровяное давление резко пада­ет и дыхание останавливается.

У животных, перенесших электротравму, отмечают тяжелые поражения нервной системы, параличи поперечнополосатых мышц, поражение кишечника, мочевого пузыря, почек, отеки, водянку суставов. Последствия электротравмы также зависят от исходного функционального состояния центральной нервной системы, о чем свидетельствует тог факт, что у наркотизированных животных дейст­вие электротока понижено. Сильный электрический ток может вызвать состояние парабиоза тканей; этим, по всей вероятности, обусловлено отсутствие болезненности пораженных тканей.

Механизм действия электрического тока. Электрический ток действует на ор1анизм в трех направлениях: элек!рохимическом, электротермическом и элект­ромеханическом.

Электрохимическое действие выражается в возникновении процесса электролиза в тканях, в нарушении их коллоидных структур; происхо­дит, в частности, образование жирных кислот от разложения кожного сала. Электрохимический процесс является причиной образования элект­рических знаков на месте входа и выхода элект­ротока.

Электротермическое действие вызывается тем, что электрическая энергия, пройдя через ткани организма, переходит в тепловую (джоулева теп­лота). Особенно много тепла образуется при про­хождении тока высокого напряжения через кост­ную ткань, из-за чего на костях появляются так называемые костяные бусы; они белого цвета, шарообразной или яйцевидной формы, величиной с просяное зерно или горошину, состоят из фос­форнокислой извести с последующим превраще­нием ее (после прекращения действия тока и ох­лаждении массы) в твердое тело. Повышение температуры тканей особенно заметно в местах входа и выхода тока; оно вызывает раздражение нервных рецепторов, в результате чего возникают болевые ощущения и рефлекторное нарушение дея­тельности различных органов. При электротравме повышается и температура тела.

Электромеханическое действие обусловлено непосредственным переходом электрической энергии в механическую, а также дейст­вием образовавшихся на месте травмы газа и пара; указанные фак­торы вызывают в тканях структурные изменения типа резаных ран, переломов, костных трабекул и др.

Действие атмосферного электричества (молнии). Удар молнии в голову обычно влечет за собой смерть от паралича дыхания. Из местных изменений при ударе молнии возни­кают ожоги с разрывом тканей, на наружных покровах, вследствие паралича сосудистых нервов и самих сосудов появляются красные зигзагообразные фигуры. Язвы, образовавшиеся от удара молнии, плохо заживают. При несмертельном поражении молнией наблюда­ют потерю сознания, судороги, а иногда стойкие параличи.


Похожая информация.


Значительная часть сонечной радиации, поступающей на Землю, охватывает диапазон волн в пределах 0,15 - 4,0 ммк. Количество солнечной энергии, поступающее на поверхность Земли под прямым углом, называется солнечной постоянной. Оно равно 1,4·10-3 дж (м2/с).

Земной поверхности достигает большая часть излучения видимой области спектра, 30

% - инфракрасной и длинноволновая ультрафиолетовой. Поверхности Земли достигают:

Инфракрасные лучи (f - 3·10в11 Гц, - 3·10в12, λ от 710 - 3000 нм) – 45% (ИК-

излучение составляет 50% излучения Солнца).

Видимые лучи (3·10в12 – 7,5·10в 16, λ 400 – 710 нм,) – 48%

Ультрафиолетовые лучи (7,5·10в 16 -10в17, λ 400-10 нм) -7%.

Небольшая часть солнечной радиации уходит обратнл в атмосферу. Количество отражённой радиации зависит от от отражающей способности (альбедо) поверхности. Так, снег может отражать 80 % солнечного излучения, поэтому он нагревается медленно. Травянистая поверхность отражает 20 %, а тёмные почвы – лишь 10 5 приходящей радиации.

Большая часть поглощаемой почвой и водоёмами солнечной энергии затрачивается на испарение воды. При конденсации воды выделяется тепло, которое нагревает атмосферу. Нагрев атмосферы происходит и за счёт поглощения 20-25 % солнечной радиации.

Инфракрасное излучение.

Инфракрасное излучение (ИК-излучение) – это невидимое человеческим злазом электромагнитное излучение. Оптические свойства вещества в ИК-излучении значительно отличаюися от таковых в видимом спектре. Напимер, слой воды в несколько см непроницаем для ИК-излучения с λ >1 мкм.

Около 20% инфракрасного излучения солнечного спектра поглощается пылью, углекислым газом и водяным паром в 10-километровом слое атмосферы, примыкающей к поверхности Земли. При этом поглощённая энергия превращаентся в тепло.

ИК-излучение составляет большую часть излучения ламп накаливания (невыносимая жара при съёмках в павильонах), газоразрядных ламп. ИК-излучения испускают рубиновые лазеры.

Длинноволновая часть инфракрасного излучения (> 1,4 мкм) задерживается в основном поверхностными слоями кожи, вызывая жжение (калящие лучи). Средне- и коротковолновая часть ИК-лучей и красная састь оптического излучения протникает на глубину до 3х см. При больших колическтвах энергии могут вызвать перезревания. Солнечный удар – результат местного перегревания головного мозга.

Видимое излучение – свет.

Примерно половина радиации приходится на волны с длиной волны между 0,38 и 0,87 ммк. Это видимый человеческим глазом спектр, воспринимаемый как свет.

Одна из видимых сторон воздействия лучистой энергии – освещённость. Известно, что свет оздоравливает среду (в том числе бактерицидное действие). Половина всей тепловой энергии солнца содержиться в оптической части лучистой энергии Солнца. Свет необходим для нормального протекания физиологических процессов.

Влияние на организм:

Стимулирует жизнедеятельность;

Усиливает обмен веществ;

Улучшает общее самочувствие;

Уличшает настроение;

Повышает работоспособность.

Недостаток света:

Отрицательное влияние на функции нервного анализатора (повышается его утомляемость):

Повышается утомляемость ЦНС;

Снижается производительность труда;

Повышается производственный травмвтизм;

Развиваются депрессивные состояния.

С недостаточной освешённостью в настоящее время связывают заболевание, имеющее несколько названий: «осенне-зимняя депрессия», «эмоциональное сезонное заболевание», «аффективное сезонное расстройство» (Seasonal Affective Disorder – SAD). Чем меньше естественная освещённость местности, тем чаще встречается это расстройство. По статистическим данным 5-10% людей имеют признаки этого симптомокомплекса (75% - женщины).

Темнота ведёт к синтезу мелатонина, который у здоровых регулирует время циклов ночного сна, чтобы он был целебным и способствующим длительной жизни. Однако, если продукция мелатонина не прекращается в утренне время благодаря влиянию света на эпифиз, в течение дня из-за неадекватно высоких дневному времени уровням этого гормона развиваются летаргия и депрессия.

Признаки SAD:

Признаки депрессии;

Трудности с просыпанием;

Снижение продуктивности в работе;

Уменьшение социальных контактов;

Увеличение потребности в углеводах;

Увеличение веса.

Может тыть снижение активности иммунной системы, что проявляется увеличением восприимчивости к инфекционным (вирусным и бактериальным) заболеваниям.

Эти признаки исчезают в весенне и летнее время, когда значительно увеличивается продолжительность светового дня.

Осенне-зимняя депресси в настоящий момент лечится светом. Хороший эффект даёт светотерапия с интенсивностью 10 000 люкс в утренние часы. Это превышает примерно в 20 раз обычную внутреннюю освещённость. Выбор длительности терапии индивидуально для каждого человека. Чаще всего длительность процедуры длиться 15 минут. В течение этого времени можно заниматься любым делом (читать, принимать пищу, убирать квартиру и т.д.). Положительный эффект отмечается уже через несколько дней. Вся симптоматика полностью прекращается через несколько недель. Побочным эффектом могут быть головные боли.

Эффект лечения связан с регуляцией активности эпифиза, который модулирует продукции мелатонина и серотонина. Мелатонин ответственен за засыпание, а серотонин – за пробуждение.

Показаны также:

Психотерапия;

Антидепрессанты.

В то же время в настоящее время может наблюдаться другой тип нарушения биологических ритмов, связанный с современным образом жизни. Длительный искусственный свет ведёт к снижению ингибиторного эффекта мелатонина на активность половых желез. Это способствует ускорению полового созревания.

Ультрафиолетовое (УФ) излучение

Ультрафиолетовое излучение относиться к коротковолновой части солнечного спектра. Граничит с одной стороны с самой мягкой частью ионизирующего излучения (рентгеновское), с другой - с видимой частью спектра. Составляет 9% всей энергии излучаемой Солнцем. На границе с атмосферой сосатляет 5% естественного солнечного света, до поверхности Земли доходит 1%.

Ультрафиолетовок излучение Солнца ионизирует газы верхних слоёв атмосферв Земли, что приводит к образованию ионосферы. Короткие УФ-лучи задерживаются слоем озона на высоте около 200 км. Поэтому до земной поверхности доходят лишь лучи 400-290 нм. Озоновые дыры способствуют проникновению коротковолновой части спектра Уф-лучей.

Интенсивность действия зависит от:

Географического местоположения (широты);

Времени суток,

Метеоусловий.

Биологические свойства УФ-тзлучения зависит от длины волны. Выделяют 3 диапазона УФ-излучения:

1. Область А (400-320 нм) - флюоресцентная, загарная.Это длинноволновое излучение, являющееся доминирующей частью Практически не поглощается в атмосфере, поэтому достигает поверхности Земли. Испускается также специальными лампами, применяемыми в соляриях.

Действие:

Вызывает свечение некоторых веществ (люминофоров, некоторых витаминов);

Слабое общестимулирующее действие;

Превращение тирозина в меланин (защита организма от избытка УФизлучения).

Превращение тирозина в меланин происходит в меланоцитах. Эти клетки расположены в базальном слое эпидермиса. Меланоциты – это пигментные клетки нейроэктодермального происхождения. Они распределены по телу неравномерно. Например, в коже лба их в 3 раза больше, чем в верхних конечностях. Бледные люди и смуглые содержат одинаковое количество пигментных клеток, однако содержание меланина в них разное. Меланоциты содержат фермент тиразиназу, участвующий в превращении тирозина в меланин.

2. Область В (320 – 280 нм) – средневолновое, загарное УФ-излучение. Значительная часть этого диапозона поглощается стратосферным озоном.

Действие:

Улучшение физической и умственной работоспособности;

Повышение неспецифического иммунитета;

Повышение сопротивляемости организма к действию инфекционных, токсических, канцерогенных агентов.

Усиление регенерации тканей;

Усиление роста.

Это связано с возбуждением аминокислот (тирозин, триптофан, фенилаланин и др.), приримидиновых и пуриновых оснований (тимин, цитозин и др.). Это ведёт к распаду белковых молекул (фотолиз) с образованием БАВ (холин, ацетилхолин, гистамин и др.). БАВ активируют обменные и трофические процессы.

3. Область С (280 – 200 нм) – коротковолновое, бактерицидное излучение. Активно поглощается озоновым слоем атмосферы.

Действие:

Синтез витамина D;

Бактерицидное действие.

Бактерицидным действием, хотя и менее выраженным, обладают другие диапахоны УФ-излучения, а также видимое излучение.

N!B! УФ-лучи среднего и котротковолнового спектра в больших дозировках могут вызвать изменения в нуклеиновых кислотах и привести к клеточным мутациям. В то же время длинноволновое излучение способствует восстановлению нуклеиновых кислот.

4. Выделяется также область D (315 – 265 нм), обладающая выраженным антирахи-

тическим действием.

Показано, что для удовлетворения суточной потребности в ивтамине D необходимо около 60 минимальных эритемных доз (МЭД) на открытые участки тела (лицо, шея, руки). Для этого необходимо пребывать ежедневно на солнечном свету в течение 15 минут.

Недостаток УФ-излучения ведёт к:

Рахиту;

Снижению общей резистентности;

Нарушению обменных процессов (в том числе остеопорозу?).

Избыток УФ-излучения ведёт к:

Повышенной потребности организма в незаменимых аминокислотах, витаминах, солях Са и т.д.;

Инактивации витамина D (перевод холекальцеферола в индефферентные и токсические вещества);

Образование перекисных соединений и эпоксидных веществ, которые могут вызвать хромосомные абберацтт, мутагенный и канцерогенный эффект.

Обострение некоторых хронических заболеваний (туберкулёз, ЯБЖ, ревматизм, гломерулонефрит и др.);

Развитие фотофтальмии (фотоконъюнктивитов и фотокератитов) через 2 – 14 часов после облучения. Развитие фотофтальмии может быть в результате действия: А – прямого солнечного света, В – рассеянного и отражённого (снег, песок в пустыне), С

при работе с искусственнными источниками;

Димеризации белка хрусталина (кристаллина), что индуцирует развитие катаракты;

Повышенному риску повреждения сетчатки у лиц с удалённым хрусталиком (даже областью А).

У лиц с ферментопатиями к дерматитам;

Развитию злокачественных новообразований кожи (меланомы, базадьноклеточной карциномы, сквамозно-клеточной карцины),

Иммуннодепрессии (измению соотношения субпопудяций лимфоцитов, уменьшению числа клеток Лангерганса в коже и снижению их функциональной активности) → к снижению устойчивости к инфекционным заболеваниям,

Ускоренному старению кожи.

Естественная защита организма от УФО:

1. Образование загара, связанного с появлением меланина, который:

способен поглощать фотоны и таким образом ослаблять действие излучения;

является ловушкой для свободных радикалов, образующихся при облучении кожи.

2. Ороговение верхнего слоя кожи с последующим шелушением.

3. Образование транс-цис-формы урокановой (урокаиновой) кислоты. Это соединение способно захватывть кванты УФ-излучения. Выделяется с потом человека. В темноте происходит обратная реакция с выделением тепла.

Критерием чувствительности кожи к УФ-излучению является ожоговый порог загара. Он характеризуется временем первичного воздействия УФ-излучения (то есть до формирования пигментации), после которого возможна безошибочная репарация ДНК.

В средних широтах выделяют 4 типа кожи :

5. Особо чувствительная светлая кожа. Быстро краснеет, плохо загарает. Индивидуумы отличаются голубым или зелёным цветом глаз, наличием веснушек, иногда рыжим цветом волос. Ожоговый порог загара – 5-10 минут.

6. Чувствительная кожа. У людей данного типа голубые, зелёные или серые глаза, светло-русые или каштановые волосы. Ожоговый порог загара – 10-20 минут.

7. Нормальная кожа (20-30 мин.). Люди с серыми или светло-карими глазами, тёмно-русыми или каштановыми волосами.

8. Нечувствительная кожа (30-45 мин.). Индивидуумы с тёмными глазами, смуглой кожей и тёмным цветом волос.

Возможна модификация светочувствительности кожи. Вещества, увеличивающие светочувствительность кожи, называются фотосенсибилизаторами.

Фотосенсибилизаторы : аспирин, бруфен, индоцид, либриум, бактрим, лазикс, пенициллин, фуранокумарины растений (сельдерей).

Группы риска по развитию опухолей кожи:

светлая, слабо пигментированная кожа,

солнечные ожоги, полученные в возрасте до 15 лет,

наличие большого количества родимых пятен,

наличие родимых пятен более 1.5 см в диаметре.

Хотя УФО имеет приорететное значение в в развитии злокачественных новообразова-

ний кожи, существенным фактором риска является контакт с канцерогенными вещества-

ми , такими как содержащимся в атмосфенной пыли никелем и его подвижными формами в почве.

Защита от избыточного действия УФИ:

1. Необходимо ограничить время пребывания под интенсивными солнечными лучами, особенно в промежутке времени 10.00 – 14.00 часов, пикового для активности УФИ. Чем короче тень, тем разрушительней активность УФИ.

2. Следует носить солнцезащитные очки (стекляные или пластмассовые с защитой от УФИ).

3. Применение фотопротекторов.

4. Применение солнцезащитных кремов.

5. Питание с высоким содержанием незаменимых аминокислот, витаминов, макро- и микроэлементов (в первую очередь нутринтов с антиоксидантеой активностью).

6. Регулярное обследование у дерматолога лицами из группы риска по развитию рака кожи. Сигналоми для немедленного обращения к врачу служат появление новых ро-

димых пятен, потеря чётких границ, изменяющаяся пигментация, зуд и кровоточивость.

Необходимо помнить о том, что УФИ интенсивно отражается от песка, снега, льда, бетона, что может увеличить интенсивность воздействия УФИ на 10-50 %. Следует помнить о том, что УФИ, особенно УФА оказывает воздействие на человека даже в облачные дни.

Фотопротекторы – вещества с защитным действием против повреждающего УФИ. Защитное действие связано с поглощением или рассеиванием энергии фотонов.

Фотопротекторы;

Парааминобензойная кислота и её эфиры;

Меланин, полученный из природных источников (например, грибы). Фотопротекторы добавляются в солнцезащитные кремы и лосьёны.

Солнцезащитные кремы.

Имеются 2 типа – с физическим эффектом и с химическим эффектом. Крем следует наносить за 15-30 минут до принятия солнечной ванны, а также повторно – каждые 2 последующих часа.

Солнцезащитные кремы с физическим эффектом содержат соединения типа диоксида титана, окиси цинка и талька. Их присутствие ведёт к отражению УФА и УФВ лучей.

К солнцезащитным кремам с химическим эффектом относятся изделия, содержащие 2-5 % бензофенона или его производных (оксибензон, бензофенон-3). Эти соединения поглощают УФИ и в результате распадаются на 2 части, что ведёт к поглощению энергии УФИ. Побочным эффектом является образование двух свободно-радикальных фрагментов, которые могут повреждать клетки.

Солнцезащитный крем SPF-15 отфильтровывает около 94% УФИ, SPF-30 задерхивает 97% УФИ, преимущественно УФВ. Фильтрация УФА в химических солнцезащиных кремах мала и составляет 10% от поглощения УФВ.



error: Контент защищен !!